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LINEAR THEOra OF MICROPOIAR ELASTICITY 

A. Cemal ErIngen 
Purdue University 

ABSTRACT: 

Equations of motion, constitutive equations and boundary 

conditions are presented for a special class of micro-elastic 

materials called Micropolar Solids.    These solids respond to 

micro-rotational motions and spin Inertia and can support 

couple stress and distributed body couples.    The couple stress 

theory is shown to emanate as a special case of the present 

theory when the motion is constrained so that micro- and 

macro-rotations coincide.    Several energy and uniqueness 

theorems are given. 



1.     INTRODUCTION 

The theory of raicromorphic materials introduced by Bringen 

and his co-workers [1]  to [5] deals with a class substance which 

exhibits certain microscopic effects arising from the local struc- 

ture and micromotions of the media.    These materials can support 

stress moments and body moments and are influenced by the spin 

inertia.    The general theory is however very complicated and even 

in the case of constitutively linear elastic solids [2] the differ- 

ential equations are not easily amenable to solution. 

To simplify the theory Bringen and Suhubi [2] introduced a 

theory of couple stress.    In view of the fact that in the abundant 

recent literature the terminology of couple stress is used in a 

different context we thought it may save the reader from confusion 

if vs name our theory "Micropolar elasticity".    In contrast to the 

couple stress theory in micropolar elasticity all components of the 

assymmetric stress tensor are determinate and the motion of the 

media is fully described when the deformation and micro-ro'ation 

vectors are known.    The concept of micro-rotation and the corres- 

ponding field equations are, of course, totally absent in the couple 

stress theory. 

Physically, solids that are composed of dipole macromolecules 

may be adequately represented by the model of the micropolar elasticity. 

Fibrous materials and some granular and porous solids may also fall 

into the domain of this theory. 

In Art. 2 we recapitulate the linear theory of microelasticity 

given in [2] briefly in slightly different form.    Art. 3 is devoted 

to the derivations of the basic equations and boundary conditions of 

micropolar elasticity.    In Art. h it is shown that the couple stress 

theory results as a special case cf  the micropolar theory when the 

motion is constrained so that micro- and macro-rotations coincide. 



Art. 5 iß devoted to a discussion of energy.    Here we determine 

the restrictions that must be imposed on the material constants 

in order that the internal energy be non-negative.    Two theorems 

on uniqueness, one for the dynamical solutions, one for the 

static case are given in Art. 6. 



2.    BASIC EQUATIONS 

The theory of micro-elastic solids formulated In [l] and [2] 

are based on a set of lavs of motion and constitutive equations 

some which are new to the mechanics of contlnua and others are 

modifications and extensions of the well-known principles.    The 

basic lavs are: 

Conservation of mass: 

|e+(Pvk),k.Q in    r (2.1) 

Conservation of micro-inertia,  [J]: 

-^ +1,      v-i      v-i,     v     =0 
^t km,r r       rm   rk        kr    rm 

in    *Y 

Balance of momentum: 

t  — s  + X 
mi   mi   kim,k +p(i. - o, ) « 0 

im   xm 

in T 

Conservation of energy: 

D€»t  v   +(s  -t  )v p   ki i,k  v ki   ki' ki 

kim m/,k  Tt,k 
+ a , + ph  in ^ 

(2.2) 

\i* + P(fi " ^) " 0        in ^    (2-5) 

Balance of first stress moments: 

(2.10 

(2.5) 



Principle of entropy: 

Pr=Pii -(f)>k -   f >0 in    ^ (2.6) 

This  inequality is being axiomatized to be valid for all 

independent processes.    In these equations 

p       «= mass density 

v,       ■ velocity vector 
k 

i        B i      B micro-inertia moments 
km mk 

v ,    m gyration tensor 
ki 

t, .    ■ stress tensor 
ki 

f       ■ body force per unit mass 

s  .    " s.,   ■ micro-stress average 
ki Ik 

X       ■ the first stress moments 

i        ■ the first body moments per unit mass 
xm 

6,      » inertial spin 
im 

€        a internal energy density per unit mass 

a        = heat vector directed outward of the body 

h       ■ heat source per unit mass 

tj        » entropy per unit mass 

0       - temperature 

Throughout the present paper a rectangular coordinate system 

(x  .  x . x ) is employed, Fig. 1.    An index followed by a comma 

represents partial differentiation with respect to space variables 

and a superposed dot indicates material differentiation, i.e. 

■ 

fqkx Ph      ^ ._-»./' /o zs 
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Here and throughout this paper repeated Indices denote summation 

over the range (1,2,5).    The foregoing equations are expressed in 

Eulerian representation.    However,  in the linear theory of solids 

the difference between the Eulerian and material representations 

disappears since in calculating the time rates the convective 

terms are ignored.    Expressions (2.1)  to (2.6) are valid at all 

parts of the body B having volume   r     and surface y     , except 

at finite number of discontinuity surfaces,  lines and points.    At 

the surface JT     of the body we have the boundary conditions 

where n is the exterior normal to   s^    and t.  .  and Ä.   . are 
^     ~(ß)   ~(ß) 

respectively the surface tractions and surface moments acting on 

y    ,    For the spin inertia we have the kinematical relation 

a.  = i .(v  + v  v ) (2.10) 
k/   mi mk  nk mn 

We note that while equations (2.1) and (2.5) are well-known 

from the classical theory, six equations (2.2) are entirely new 

and nine equations (2.^) and the energy equation (2.5) are modified 

and extended forms of the corresponding limited axioms.    In fact 

the skew-symmetric part of (2.h) is certainly new and, of course, 

the kinematical variables v, . and i   . do not enter into the classical 
kt ki 

continuum mechanics. 



If we exclude the phenomena of heat conduction,  in the 

present theory, the determination of motion requires the deter- 

mination of the following nineteen unknowns 

P(^t)     ,    ik/U,t)       ,      vkU,t)        ,    Vki(2C,t) (2.11) 

as against the four unknowns p and v of the classical theory. 
k 

The basic equations (2.1) to (2.5) are valid for all types of 

media independent of their constitutions.    The character of the 

media are reflected through the constitutive equations.    For micro- 

elastic solid in [2] we gave sets of constitutive equations valid 

for nonlinear deformations.    Here produce only the linear theory 

relevant to the present work.    These are 

K, = tt\ + T)e       + n, G    ] K, + 2(u   + oje kt 1 rr 1    rr     kl 1        1    ki 
(2.12) 

1   Ik        1    kl 

\«T((1) 6      +(p 6) + T(cp 6 
tm       1   kr,r   mi        rr,i    mk k    rk,r    mi 

+ 'rr,» 6ki) +    T5 Vrr.k Bm/ + \ *trtr ^ 

+ T5(<Pr/,r6mk + V,r 5ki) + T6 W 5k/ (2.14) 

+   T     CD +      T„(CP +   CD )  +   T      CD 

+   T        (P +   T        f? 
10   m/,k 11    km,;. 



where \, t, TI. , a, o,, K,, V, and Tn  to x, are material 
1 '1     1     1     1'    1 1 11 

constants and e, . and e   . are respectively the strain tensor and 
ki ki 

the microstrain tensor of the linear theory defined hy 

£ki • \,/+ \i <a-:L6) 

It can be shown that [2]  the arc length and the angle changes 

can be calculated once these quantities and flp, .  are known . 
kX,m 

For the linear theory we also have 

\/" \i (2-17) 

2 
A thermodynamic discussion can be made showing that for a non- 

heat conducting media 

q-0     ,  T,--| (2.18) 

where \|r = t   - ©T) is the free energy which depends on p     and 0 

only.    Alternatively 

1 
v     and (p     used here correspond to v     and (p      of [1] and [2] 
k/ k* *k ik 

and v, . and ffi . of [J] and [5]. 
k/ kl 

2 
For these and other interesting results we refer the reader to 

[1],  [3' and [5]. 
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q = o    ,        e »  -■ (2.19) 

where e is considered to be a function of T\ and p 

Upon substitution of (2.15) and (2.l6) into (2.12) and (2.13) 

and the result and (2.1^) into (2.5) and (2.1+)  together with (2.1), 

(2.2),   (2.10),  (2.17) and v = 34   we obtain just the right number 

of partial differential equations to determine the nineteen unknowns 

pU>t) >      ^te'*) * uk(jc,t) and<PkiU»t). 

Under appropriate boundary and initial conditions these partial 

differential equations should be adequate to predict the behavior 

of micro-elastic solids. 

The theory outlined above is too complicated for application. 

The theory of raicropolar elasticity presented below, hov/ever, not 

only brings some elegance into the picture but also is simple 

enough for mathematical treatments. 



5-    THEORY OF MICROPOIAR EIASTICIIY 

Definition.   A body vlll be called mlcropolar elastic solid 

if for all motions♦ 

The motion of micropolar solids appears to have important 

implications.    Such materials are physically realistic.    They 

exhibit micro-rotational effects and can support body and surface 

couples.    Materials consisting of dumbbell macromolecules belong 

to this class.    Some fibrous and granular media are also approxi- 

mated by this model. 

By use of the skew symmetric properties of Ä and <£ the basic 

equations of such continua can be simplified a great deal.    We 

first define couple stress tensor   in    , micro-rotation vector q) , 

micro-angular velocity v , micro-rotation inertia o   and body 

couple i by 

kr ""  rim \ 

'r 5 2 erki ^ki 
1 

v B — e   v 
r - 2 rki ki 

•        • 
0  = - €    0 
r *   rki ki 

i  a - 6     i 
r -  rki ki 

m 

(3.2) 

The couple stress tensor m  has the same sign convention as the 
kr 

stress tensor t , Fig. 2. 
kr 

Upon using (5.2) in (2.k)  and (2.5) these equations can be 

expressed respectively as [5). 
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Vr^klr^r^VV-0 (5-5) 

(5.4) 

P€ " WV ■ €kir Vr) + mk^ Vi,k 

+ ^k^k + Ph 

The boundary conditions (2.9) can be written as 

mrknr =m(B)k 
0n V (5-5) 

where m,   .      is the surface couple acting on   y'   . 

Similarly the constitutive equations for t and ^ can be 

reduced to simpler forms.    In simplifying the expressions of 

\ we make use of the skew-symmetry property of \ and <g as 

expressed by (5'l) and employ the expressions (3.2).    This 

leads to the following restrictions on the coefficients T  . 
a 

Using (3.2)    and (3.2)    and introducing a set of new elastic 

coefficients by 

a » 2(T9 - Tg)    , ß S.2(T^ - T5) 

"    V     4 5 7 8 9 ICT 

A £ V   +  T + T| ,        ^ - ^T   
+  ai +  Vi 

<*\'\ 

(5.7) 

(5.8) 



11 

we finally arrive at the constitutive equations 

*, * ■ ^        K, + ^u,   . + u« u)   +   K(u, u " €, « ^ )    (5-9) kJl r,r     ki k,/       /,k i,k       kir r 

mki " a<Pr,r   6ki + ß<Pk,i + 7q>i,k (5'10) 

An alternative form to (5-9) is 

\# " Xe     K, + t2n + K) e     + K6      (r    - (p ) (3.11) ki rr   k/ kt kim   m       m 

where r   is the rotation vector of the linear theory of elasticity 
JL 

defined by 

r   = - e       u (3.12) 
k "2   kim   m,i ^ ^; 

In the present theory the stress average s      disappears from the 

equations. 

For simplicity we consider micro-isotropic solids only.    In 

this case we have 

ik/ - lU,t) 6ki (5.15) 

Carrying this into (2.2) and recalling that    v      = - v 

we obtain 

Di 
— »0 or i B constant => j/2 on material lines     (J'l'O 

With this then the expression of inertial rotation becomes 

\ - J\ " t\ (5.15) 
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The field equations of linear micropolar elasticity are 

obtained by substituting (3.9), (3.10) into (2.3) and (3-3)■ 

Hence 

(A + M)uMk + (M + K)XU + Kt^^ + p(fk - ük) - 0 (3.16) 

(a + ß)<p/,ik + 7%u + K*u*\,i - 2K\ + ^V^ = 0 (5-17) 

In the linear theory the density p is to be treated as constant 

so that no need arises for the use of the continuity equation (2-1). 

Generally the integral of this equation for the linear theory is 

used for the purpose of calculating small changes in density after 

the displacement field is known. This is given by 

Po/pE1+uk.k (5*l8) 

The energy equation (3.^) with the use of (3^9) and (3.10) 

becomes 

^ = 'Vfi+ ^ •f 'Kfto+ ^k ■ V(wk V 
+   a<p       v       + ßcp     v       + 7<p       v   . \J' sJ 

rC^k      £ j Z K^*   Z jK. Jo jk      ZjK. 

where w, is the vortlcity vector defined bv 
k 

w, 5 ^ €, . v „ (3'20) k  2 kim m,/ w  / 

Equation (3*19) can be integrated with respect to time to give 

These equations can be made to coincide respectively with eqs. (6.13) 

and (6.1*0 of [2] by redefining material constants and using (3.2) . 
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^  " Vo = i U ekk eii + {2* + ^ eki eik 

+ 2'C(V \)(rk " V + a\,k 'i,! (3.21) 

where p    and e    are the mass density and internal energy in the 
o o 

undeformed body.    Without loss in generality we may take e    =0. 
o 

In obtaining (3.21) in the spirit of the linear theory we assumed 

that g, = a'   An alternative form to (3.21) is 

<*    = i (tki[eki + ekim (rm " V3    +\e<Pi,k (3-22) 



Ik 

k.    COUPLE STRESS THEORf 

We now examine a spec leu. case of the above theory namely 

the motion with constraints 

<p « r (4.1) 
k  k 

In this case the stress constitutive equations (3«5) reduce to 

\l e Aerr 5ki + (2,i + KK* 

which are identical to those of the classical theory of elasticity 

provided we replace n + 2     ^y ^*    T116 field equations (5«16) 

now become 

(x + ^+ ^ Vk+ ("+ 2 Kit+ p(fk ■ \) e 0 

which are the celebrated equations of Navier with the replacement 

of \i  for |i + /c/2. From equations (5.17) u drops out. Since cp 

is no longer an independent variable (5'17) fully determines the 

body couple £ admissible for this class of motions. With this 

viewpoint then the present theory goes into the classical theory 

of linear elasticity. 

There is, however, another way of interpretation. Suppose 

that (4.2) only determines the symmetric part of the stress tensor 

i.e., write 

■ 
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wherea( ) enclosing the parenthesis indicates the symmetric 

pare of a tensor and similarly a [ ] will be used to indicate 

the skew-symmetric part of a tensor, i.e. 

V)= I (aki+ aik)      '   a[ki] - 2 (ak/ ■ V 

We now solve for the antisymmetric part t,  . of the stress 

tensor from the original equation (3«3) of the balance of moment 

of momentum. By multiplying (3.3) by €   we first put it into 
kmn 

the form 

tr ., + - €   m    - p{tr   ., - or, .,) ■ 0 (4.3) 
[ki]  2 rki nr,n   v [k/]   [ki]' 

Upon substituting (4.1) into (3.10) and (3.15) with (3.12) used 

for r we get 

m  - Je,  u  , {k.k) 
k/  2 imn n,mk 

Substituting these into (U.3) we find 

V] " 2 (\,inn ■ Ui,knn)   + p(i[ki]  ' J V,!^ (lt-6) 

Using (4.2) and (4.6) we calculate 

^k " ^kijjk + ^kil^k 

and substitute it into the equations of motion (2.3).   Hence 
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+ -*■ u 
2 k,/k 

2 
where 7 is the laplacian operator in rectangular coordinates, i.e. 

2 
V u = u 

t  - i,kk 

Equations (^.7) are the field equations of a theory mown as the 

couple stress theory. The present theory, therefore, for a con- 

strained motion gives the couple stress theory. 
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5-  NON-NEGATIVE INTERML ENERGY 

In this section we investigate the conditions that the elastic 

moduli must be subjected to in order that the internal energy 

density be non-negative. These conditions have important impli- 

cations in regard to stability problems, wave propagations and 

uniqueness theorems. 

Tneorem 1.   (non-negative internal energy).  The necessary and 

sufficient conditions for the internal energy to be non-negative 

are 

0 < 5>v + 2|i + /<        , 

0 < 3a + 2/ 

0   <  |i ,      0   <   K 

-7 <ß < 7       ,       0 <7 
(5-1) 

The sufficiency of (5«1) is proven by merely observing that when 

these inequalities hold each one of the following energies con- 

stituting (5-21) are non-negative 

PeE S i ^Vii + ^ + K)  ekieik] (5-2) 

^R » ^k " V (V' V 

P€M £ 2  ^kAi + ^k,^^ + 7<**ti?i,*] 

(5.3) 

(5.10 

resulting In 

P€ - p(eE + eR + eM) > 0 (5.5) 

The fact that pc is non-negative under the conditions (5.1) , 
E 1 

(5'1)0 are well-known from the classical theory of elasticity. 
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In fact these conditions are also sufficient to make pe    non- 
E 

necative.    It is simple to otcerve that for r    ^ cp ,  pe    > 0 

if and only if K > 0.    To see the same for    pe    we write this 

expression in the fonns. 

1 P€
M " 7(5 a + ß + y)(cp      + cp      + cp     )   + ß [(^ . + ^ .) 
M      5 1»1        2,2 t),j 1,2 djl 

+ (^ .1^ J2 + (^o ^1^ o)   Mr + P)    [9, 9 + cp      (5.6) 1>5        3>1 2,5""   5>2 1,2        2,1 

2-2-2-2 
+ ö      +cp       +cp     ,+ (p,    ] yl,5     ^,1     ^2,3     V5,2J 

where upper signs go together and lower together and 

m       =   cp        &      + cp 
\,i *     r,r    k/      Yk,- k,k (5.7) 

From (^.6) we see that in either case 

3a + ß + 7 > 0 ß > 0 7- ß > 0 (5.8) 

3a + ß + y > 0 ß < o 7 + ß > 0 (5.9) 

we have pe > 0 so that (5.1) are sufficient to make pe > 0. 
M "■ M — 

Conditions (5.1) are also necessary for the nor.-negative- 

ness of pe. To see this we first note that e , r - cp and cp 
k£  k   k    k,i 

can be varied independently of each other. Since the above three 

energies (5.2) to (5.^) are uncoupled with respect to these vari- 

ahles each one of these energies must be non-negative independent 

of each ether. Certainly K > 0 is also necessary for pe to be 

non-negativs provided, of course, r j^ <p . From classical elas- 
K  K 

ticity theory we also know that (6.1)   and (6.1)    are necessary 

and suff: ■   ent conditions for pe    > 0.    Hence we would like to 
E - 

For r = 9 (the couple stress theory), < need not be restricted by 
K,    K 

(5.1),. However, in this case by writing 2^ for 2fi + K, K disappears 
from all equations. 
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find out if the last three conditions in (6.1) are necessary for 

p€ to be non-negative. To this end write (h.k)  as a quadratic 
M 

form in a nine dimensional space, i.e. 

D€ » a  v Y    t   a  = a 
M   ij yi yj    '    ij   ji 

where 

yi E ^1,1 ' y2 ' ^2,2 ' y5 £ ^,1 

yk - ^l^ ' y5 S ^2,1 , y6 R *?.,! 

yTm<P5,2 ' y8£Cp
3,l ' y9aCPl,5 

ail-a22"a55"   a + ß + 7 ai2-ai5'a 

%5 " % " % " ß 

U " a55 " *66 " a77 " a88 ' a99 " 7 

all other a     ■ 0 

The characteristic values a   of a     are obtained by solving the 

equation 

det (a      - a5    ) - 0 
ij ij 

The nine roots a of this equation are 

ai " a2 " a5 " 7 " ß '   % " a5 " a6 " a7 " a8 " 7 + ß 

a = 5a + ß + 7 
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In order a     y   y   > 0 to be satisfied to all y.  it is 
ij    i   J - i 

necessary (and sufficient) that 

7-ß>0 , 7+ß>0 

Ja + ß + 7 > 0 

which is the proof of the theorem. 



(6.1) 

(6.2) 
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6. THE UNIQUENESS 

The uniqueness theorem is a statement that the field 

equations (5.16), (3.17) or in curvilinear coordinates 

(A + 2n + K)  2 2 * ü - (^ + <) 2 * 2 "* ü + 'f 2 * ? 

+ P(X - a) ■ 0 

(a + ß + 7)22-^-72>2>®+f2xii-2K2 

+ oil - J<P) - 0 

possess xmique solutions under certain boundary and initial 

conditions for certain values of elastic modulii. 

As the Initial conditions ve consider 

liU,0) - j^U) in   Y      (6-5) 

)i(^0) - xjjc) 

2(^0) - q)0U) in Y (6.4) 

j(x>0) " Vx) 

where 1L> Z_> JL <uld iL "^ prescribed in K . We leave the 

boundary conditions presently unspecified. Ultimately we intend 

to show that variety of conditions are possible. For example jx 

and 9 may be specified on the boundary surface y of the body. 

It is equally permissible to specify the tractions and couples 

on j      provided that they are in equilibrium. Many mixtures of 

both are also possible. In fact, all admissible boundary conditions 

allowing unique solutions must satisfy 
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W \ + "(n)lA = 0 0n^'     t-0 (6-5) 

where U> 9 > i/   v and m.  .  are respectively the differences of 
(cJ        (a) 

Ü, <£, ;£.  . and ffi..  . from their respective values on  ^f   . 

Theorem 2.    (Uniqueness).    Let the conditions (^.1),  r f cp   and . ^ k     k 

j > 0 be satisfied in a bounded, regular domain" ""[/     of space 

with boundary <f    .    Then there exists a_t most one    ü^t)    52^ 

one j(2C/t) both twice continuously differentiable for jc in  'J/" 

+ 5^   and 0 < t < oo, which satisfy (6.1) a£iid (6.2), the initial 

conditions (6.5)>  (6.^) and a set of boundary conditions compatible 

with (6.5) . 

To prove this theorem suppose that contrary is valid and two 

solutions 

ii
(a)      ,     2(a)    ,       (a - 1, 2) (6.6) 

exists satisfying (6.1) to (6,5).    Let 

<1)        (2) (!)        (2) ,<■ ^ 

Then clearly ü and cp satisfy (6.1) and (6.2) with 1^= £5r 0 and 

the initial conditions 

ii(x>0) = ]i(2c,0) = cp(x,0) = 9(^0) = 0        (6.8) 

I^et t     , ra      ,   t/  »    and m.   .    be respectively the stress, couple 

stress, surface traction and surface couple corresponding to the 

solution (6.7),  i.e. 

The terminology "regular domain of space"  is used to denote domains 

for which the Green-Gauss theorem is valid. 
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V/e compute the rate of the total internal energy 

^     = — / pe  dv =    /    pi dv 
dt j J 

where we employed the continuity equation r = 0 . Using 
p dv 

(3.^) with q = 0, h = 0 , this may be put into the form 

£=/[(tv)       -t        V-€       tv 
^       J   LV ki i',k       ki,k i       kir kt r 

ki r,k       ki,k £J 

Applying Green-Gauss theorem to the first and fourth terra and 

replacing t and m by their respective values  (eqs. 2.3 and 
k« }k kit ^k 

(3.5) wioh f =   i. = 0) i.e. 

t =  DV 
ki,k     v I 

\i,k    -    "^kr \r+ PJ^ 

we obtain 

^T    +    "k       =9    (t .v    + m,   vjn    da (6.10) 
^ ■'*' J    % ki i       ki i' k v        ' 

y 
where ß is the exterior normal to y    and 

X B i/p^Vk+ Jvkvk)dv (6,11) 

is the total kinetic energy.     If the boundary conditions are such 

as to make the right hand side of (6.10) vanish we get 

£f (t) +X(t) -c 



2k 

where C is a constant.    Since both   Q.   and }\.    are non-negative 

we have 

S (o) +X(o) «o 

Consequently 

^ (t) + ^< (t) - 0    ,      0<t<" (6.12) 

With j > 0 we have X non-negative. By virtue of (^.1) ^ is 

non-negative. Therefore we must have 

E (t) = 0 > ^(*) = 0    0 < t < » 

From the second of these it follows that since JJ (^,0) «    9(^0) a 0 

it follows that 

u(ic,t) ■ 0        ,      jCxjt) «0      inK,     0<t<o0 

This means that ü     =   ü      ^^ $       = 2      •      Hence the proof of 

the theorem. 

Next we investigate the static case.    For this we give the 

following theorem which is the counterpart of the Clapeyron's 

theorem in the classical elasticity theory. 

Theorem 5 •    If a hody is _in equilibrium under a given system of 

body loads f, I and surface loads %_.   . and m.   .,  then the internal 

energy of deformation is equal to one-half of the work of external 

loads that produce displacements and rotations ü and cp   from the 

unstressed state.    Mathematically 
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p(f
k\

+ W dv +|(t(ß)k\+ \&)& äa 

y 
■   2/ pc  dv 

(6.15) 

The proof of this theorem follows by forming the first integral 

on the left and using Green-Gauss theorem.    For 

V = -/ p(fkuk+ i^) dv    -   /[tik^uk + (m^^ 
cy y 

+ W^r )<Pk] dV   -/(tik\+fflikCpkVV 

■/(tkiUk,i + Vk^^kirVk^ 
•y 

By use of Green-Gauss theorem we convert the first integral on 

the right to a surface integral. Upon using (3•22) in the second 

we get 

v^(^ + m(a)''9'',da"i/D£dV 

which is the proof of the theorem. 

The above theorem can be used to prove: 

Theorem k.    (Uniqueness of static solutions).    Let the conditions 

(5.1) with u « (p = 0    and 9,, ^ r   be satisfied in a bounded, regular 

domain    r        of space with boundary y     .    Then there exists at 

most one stress field t     and one couple stress field   m     arising 

from twice continuously differentiable displacement field ]j.{^) and 

micro-rotation field   <p(^) satisfying 
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t. . » t,  » % w - m ,.    on      y (6.1U) (li)k   ok    (ii)k   ok        ^L 

u»u,    ,©«9       on <-/ - cf (6.15) 
k   ok   '  k  ok ^  Ji 

Proof: Let Ji^' (jt) and 9 J (jc) , (a = 1,2) be two distinct 

solutions of (6.1) and (6.2)(with 4 H j E 0) satisfying (6.1U) 

and (6.15). In view of the linearity of (6.1) and (6.2) 

are also the solution of these equations with vanishing £ and £. 

Consequently by the theorem 5 above we have 

/ {\^\ * "(a)* V *» - 2^ ■* ^ <6-16' 

But on i/    we have %,  \ " Vi/  \ " 0   since both i/  \ ,ind i/  \ 
^ (a)     ^'(1)        (2)        vß' 

have the common value ^   and m>  . and m       the same value 1^. 

Similarly on^-M    ,   j^ "  f  " ^ .    Thus (6.16) reduces to 

r« dv = 0 

But because of the conditions (5.1) this integral can vanish only 

if 

e
k/'

0  -   \-\'0 !6-11) 

According to constitutive equations (5.10) and (J-H)  then t     = 

m . = 0.    Hence the proof of the theorem, 
ki 

The integral of (6.17) is 

fl . x   + b (6.]8) \B \txr\ 
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where ü     = - SI,    and b   are constants.    Substituting (6.l£) 

into (6.17)„to calculate r    and using I5.I2) we get 
2 k 

vk       k 

where 
^ 1 

"k a 2    Ck£r.i "n^ 

is a rigid rotation.    We therefore see that the displaccv.ent and 

micro-rotation fields are determined within a rigid rotation and 

translation.    When^/^ i/ j^ 0 '*'- have the mixed boundary conditions. 

Since in this case u s «p » 0 on   y  - y7     ve see that   2 = b = 0 

and the fields ü and «p are uniquely determined. 

In the case   ^   ■ ^ we have the traction boundary problem. 

For this case the fields \i and cp are determined within a rigid 

rotation and translationc    When IQ and rriQ are in equilibrium,  i.e. 

^  t    . dä = 0    ,        Ö    (x ^ ^ + nj   .  da = 0 (6.19) 

then u and cp are again uniquely determined.^ "Mixed-Mj.xed" type 

of bovindary condition exists for which the solution of (6.1) and 

(6.2) is unique.    All such class of solutions must satisfy 

(ll)k    k       (ii)|Jk 

where £.  ., ffi,   »   , li   and <p are the difference ot £.   \ > Ut \> ii. 

and <p from their respective values on y   . 
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